RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. THIRD SEMESTER EXAMINATION, DECEMBER 2018

SECOND YEAR [BATCH 2017-20] INDUSTRIAL CHEMISTRY [Honours]

Date : 15/12/2018 Time : 11 am - 3 pm

Paper : III

Full Marks : 75

[Use a separate Answer Book for each Group]

$\underline{Group} - \underline{A}$

Answer any five questions:				
1.	a)	Write down the energy expression for simple harmonic oscillator.	[1]	
	b)	Calculate the difference in energy of two successive levels.	[2]	
	c)	Calculate the frequency of light which induces a vibrational transition in terms of the frequency of vibration for a simple harmonic oscillator.	[2]	
2.	a)	What is the essential condition for a (i) light-induced vibrational transition (ii) light induced rotational transmission (iii) Raman scattering?	[3]	
	b)	Explain how the effect of anharmonicity is reflected is a vibrational spectrum of a diatomic molecule.	[2]	
3.	a)	A vibration transition is always accompanies with rotational transitions. With the help of a schematic diagram show how instead of a single line in a vibrational spectrum we get a series of line due to coupled vibrational and rotational modes.	[3]	
	b)	The spacing between the lines in the microwave spectrum of $H^{35}Cl$ is 6.350×10^{11} Hz. Calculate the bond length of $H^{35}Cl$.	[2]	
4.	a)	What is a photostationary state? How does this differ from the Equilibrium state.	[1+2]	
	b)	What is the difference between overtones and hot bands in the IR-spectra? Give one example of photosensitized reactions.	[1+1]	
5.	a)	The Vibrational energy levels of F_2 molecule is given by the expression:	[3]	
		$E_{v}(cm^{-1}) = 215(v + \frac{1}{2})\left\{1 - 0.003\left(v + \frac{1}{2}\right)\right\}$		
		Find (i) the anharmonicity constant (ii) Equilibrium oscillation frequency and (iii) zero-point energy of the molecule.		
	b)	Explain why fluorescence has lower frequency compared to the absorbed light.	[2]	
6.	a)	Explain what do you mean by:		
		(i) Chemiluminescence (ii) Frank Condon principle	[2.5×2]	
7.	a)	Invoking the idea of virtual states explain the origin of stokes and anti-Stokes lines.	[3]	
	b)	Which of the two liens is more intense and why?	[2]	

8.	a)	The force constant of 79 Br 79 Br is 240 N.m ⁻¹ . Calculate the fundamental vibrational frequency and the zero-point energy of 79 Br ₂ . [4]					
	h)	What is the zero point energy of a rigid rotor? [1]					
	0)	$\underline{Group - B}$					
(Answer <u>any five</u> questions) [5×5]							
9.	a) b)	What is microstructure and nanocystalline structure? Illustrate the different types of structure.					
	C)	while the structure-property-application co-relationship of materials. [1+1+5]					
10.	a) b)	Define melting point and cohesive energy.Derive the expression of melting point of a spherical nanoparticle.[1+4]					
11.	a) b)	What is the difference between 'lattice' and 'basis'?[2]What is 'Miller indices'? How is it calculated? Illustrate with an example.[3]					
12.	a)	List the point co-ordinates for all atoms that are associated with BCC unit cell. [2]					
	b)	Draw an orthorhombic unit cell and within that cell indicate the $\begin{bmatrix} 2\overline{11} \end{bmatrix}$ direction and $\begin{pmatrix} 2\overline{11} \end{pmatrix}$ plane. [3]					
13.	a)	Calculate the 'atomic packing factor' for simple cubic lattice and FCC lattice. [1.5+1.5]					
	b)	If the atomic radius of lead is 0.175 nm, calculate the volume of its unit cell in cubic meters. Given that Lead has FCC crystal structure. [2]					
14.	a)	Niobium has an atomic radius of 0.1430 nm and a density of 8.57 g/cm ³ . Determine whether it has a FCC or BCC crystal structure. Given A_{Nb} =92.91 g/mol. [3]					
	b)	The density and associated percent crystallinity for two polypropylene materials are as follows:					
		$\rho(g/cm^3)$ Crystallinity (%)					
		0.904 62.8 0.895 54.4					
		Compare the density of totally crystalline and totally amorphous polypropylene. [2]					
15.	a)	A BCC crystal is used to measure the wavelength of some X-rays. The Bragg angle for reflection from (110) planes is 21.5° . What is the wavelength? The lattice parameter for the crystal is 2.85 Å. [2]					
	b)	From the tracing of a diffractometer, the following 20 values in degrees were measured : 28.4, 47.3, 56.1,69.1,76.5, 88.1, 95.0 and 106.8. Copper k_{α} radiation (1.54 Å) was used. Index the					
		lines, find the crystal structure and the lattice parameter. How many more peaks do you expect in the total XRD profile? [3]					
16.	a)	Why 'defect' is so abundant in natural crystal? Write two major kind of defects observed generally in solids. [2]					
	b)	Calculate the number of Schottky defects per cubic meter in KCl at 500° C. The energy required to from Schottky defect in 2.6 eV, while the density of KCl (at 500° C) is 1.955 g/cm ³ .					
		Given $A_k=39.10$ g/mol and $A_{Cl}=35.45$ g/mol, and Boltzmann constant					
	c)	$\kappa = 0.02 \times 10^{\circ} \text{ ev } \kappa$ [2] How dislocation is formed in a solid material?					
	-)	Group – C					
(Answer <u>any five</u> questions) [5×5]							

17.	a)	What are the hypo eutectic alloys & hyper eutectic alloys.	[2]
	b)	Show the peritectic reaction in a silver-platium phase diagram where melting point of silver & platinum are 961°C & 1769°C respectively.	[3]
18.	a)	What are the important ores of Aluminium?	[1]
	b)	How the metal in extracts from its ore?	[3]
	c)	'Aluminium Cannot be extracted by reduction of it ores by Carbon'— Explain.	[1]
19.	a)	Write down the significance of Ellingham Diagram.	[2.5]
	b)	Draw the predominance Diagram for Ni-S-O system at 1000 K.	[2.5]
20.	a)	What is alloys?	[1]
	b)	Describe briefly the methods employed for the manufacture of alloys.	[2]
	c)	Mention the Compositions of the following alloys: a) gun metal b) Duralumin. Mention their uses.	[2]
21.	a)	Discuss the various steps involved in powder metallurgy process.	[3]
	b)	What are the advantages and limitations of powder metallurgy— Explain.	[2]
22.	a) b)	Give the name and composition of an alloy possessing zero coefficient of explanation.	
	(0)	What is the main difference between grey cast Iron and white cast Iron	
	d)	What is the nurest form of commercial Iron? What is the percentage of carbon in it?	
	u) e)	What is the effect of increasing Carbon content in steel? $[1+1+1]$	+1+11
	0)		
23.	a)	Explain different types of Ingot Defect & their remedies.	[3]
	b)	Write down the principle of Continuous Casting.	[2]
24.	a)	What is There Flame Temperature.	[2]
	b)	Write down the Principles of LD process.	[3]

- × -